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Abstract. In learning under external disturbance, it is expected that some tolerance in the
system will optimize the learning process. In this paper, we give one example of this in learning
from stochastic rules by the Gibbs algorithm. Using the replica method, we show that for the
case of output noise, there exists an optimal temperature at which the generalization error is
a minimum. This temperature exists even in the limit of large training sets and is determined
by the stable replica symmetric solution. On the other hand, for other types of noise no such
temperature exists and the asymptotic behaviour is determined by the one-step replica symmetric
breaking solution. Further, the asymptotic expressions for learning curves are derived. They are
precisely the same as those for the minimum-error algorithm.

In recent years, the problem of learning from examples in neural networks has been
extensively studied from the viewpoint of statistical mechanics [1, 2] since Gardner opened
the way to treat the problem by means of the replica method [3]. Since there are many
learning algorithms, it is important to evaluate generalization ability acquired through
learning. For this purpose, the learning curves of the generalization €fravhich is

the probability of false prediction on a novel example, have been calculated for various
types of networks, and it has been clarified that there are rich behaviours of learning curves
depending on the details of the networks [1, 2].

Among these learning behaviours, it seems very interesting that there may exist an
optimal procedure for learning. In particular, we expect the presence of an optimal
temperature in learning stochastic rules by perceptrons for the Gibbs algorithm. The reason
is that in general the existence of some proper tolerance will allow the system to adapt to
an external disturbance more easily, and in the Gibbs algorithm, the temperature represents
the measure of tolerance in selecting suitable network parameters, i.e. synaptic weights.

On this subject, there have been several studiefrdgyy[4] and Gyrgyi and Tishby [5]
studied the perceptron learning for the spherical synaptic weight under finite temperature by
the replica method. They treated the input-noise model in which input examples are subject
to external disturbance and found there is an optimal temperature at which the generalization
error takes the minimum value. Since the replica symmetric (RS) solution becomes unstable
for large«, they considered the optimal temperature only for the restricted regie@mbiere
the RS solution is stable. Here,is defined asx = p/N, whereN is the dimension of
synaptic weights ang is the number of examples.
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The other study by Opper and Haussler is on the output-noise model in which the binary
output by a teacher is reversed by a given probability [6]. They studied learning behaviour
at the special temperatuffey for which the RS solution is stable for any valuecof They
show that the temperatuf@®y is optimal for the Bayes algorithm. Further they state that the
fast convergence of the learning curvesg = (€g— €min) x o~ 1, whereen, is the minimum
of the generalization error, is due to learning under the finite temperature. However, it is
not obvious whether there exists an optimal temperature and, even if it exists, whether it is
equal toTon for the Gibbs algorithm.

The purpose of this paper is to investigate whether an optimal temperature exists in the
problem of learning from stochastic examples by perceptron with spherical synaptic weights
for the Gibbs algorithm, especially in the asymptotic regionxof> co. We calculate the
learning curve for general types of noise including input and output noise by replica method
under the ansatz up to the one-step replica symmetry breaking (1RSB).

Let us describe the problem we treat in this paper. For details, see [7,8]. Hereafter,
the norm of any vector is set t¢/N. We consider a stochastic target relation between a
N-dimensional input vectog and a binary output® € {1, —1} which is represented by a
conditional probabilityp, (r°|x). We assume that the probability is a function of the inner
product between the input and the optimal spherical weigh#® as

o 1+ P
pr(+lx) =Pw) = > 1)
u® = (x - w)/V/N.
We further assume that the functidh(«) is increasing and behaves as
P(u) ~ asgnu)|ul’ @)

nearu = 0. Further,P(—u) = —P(u) is assumed for brevity. The generalization ergr
is expressed as

e—e-+/ooD P()H(Ry > e‘—;—/ooD P(y)
g = €min o y y 1 R2 min = 3 A y y
where H(x) = [ Dy, Dy = exp(—y?/2)dy/+/2r and R is the overlap between the
optimal weight and the weight of a learner.

When the training sef, = {(z1,77), (x2,75), ..., (xp, 1)} is given, we define the
energy of a weightw as the number of discrepancy between outputs by the teacher and
by the learnerE[w, &)] = ﬁ=1®(—rﬂuﬂ), where®(u) is the Heaviside function and
u, = (x, - w)/\/ﬁ.

The learning strategy we adopt is the Gibbs algorithm, in which a synaptic waight
is selected according to the probability proportional td%é*-&1, wherepg is the inverse
temperature = 1/T. The algorithm for the limitl’ — +0 corresponds to the minimum-
error algorithm, in which only the synaptic weights whose energies are minimum are
selected. Therefore, the temperature represents a measure of tolerance in selecting synaptic
weights. The partition functio is expressed as

Z= /dw S(w? — N)e PEwE] — /dwé(wz - N)I_j[e? + (1 —e")O(ruu,)]
and we calculate the average free energy per synégse the standard replica recipe
1
—BNf =(InZ) = Iimo—((Z"> -1
n—-0n

where () denotes the average over quenched variabjgsﬁ and w®.
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The results obtained in this paper are summarized as follows.

(1) The asymptotic behaviours of learning curvestas- oo in the Gibbs algorithm are
characterized by the local property of the probabify the exponens. The expressions
of the generalization error for the RS solutions are

Aeg = Y (Tha™t fors =0 ®)

Aeg ~ (YR (1)} 55 o~ 15 for s > 0 (4)
and the ones for the 1RSB solutions are

Aeg ~ YSFB (Tt for s =0 (5)

Aeg ~ YIRSB (7)o~ 15 (In o) 259 for § > 0. (6)

The «-dependence of these expressions are precisely the same as those obtained by the
minimum-error algorithm both for the RS and 1RSB solutions [7, 8].

(2) For the output-noise modet & 0), there exists an optimal temperature &olarger
than some critical valuép, and this temperature really gives the minimum generalization
error and is determined by the stable RS solutiméBS(T) attains its minimum value at
the finite value of7j where the RS solution is stable. For other types of naise (),
the asymptotic behaviour is determined by the 1RSB solution and the optimal temperature
does not exist. That is, although"> (T) behaves as

Y RNT) o /1T for T < ot

the RS solution is asymptotically unstable for fixé&d On the other handy"*°?(T) is
independent of temperature for a wide rangerof

Y IRSB () o st for o~ 57 « T <« a5
That is, no special temperature exists.

Now, let us go into detailed calculations. In this paper, we use the following notation.
q*f = “”T“’ﬁ) denotes the overlap between weights of learnerskrinet % the overlap
between the weight of a learner and the optimal weight. Since the asymptotic behaviours
of these quantities are different in the two cases ef 0 and§ > 0, we treat these cases
separately.

The case 08 = 0. Assuming the RS ansatz, we pft® = ¢ and R® = R. For general
P, the RS free energy RS is expressed as

1 1-R?> 1 ~ (/g — R%u — Ry
_= Ry _ - _
Tf 2(1_q)+2|n271(1 q)+a/Dy2”P(y)/Du|nH< Ty

whereH(u) = e # + (1—e?)H(u). As an example, we tred () = ksgnu) for several
values ofk and calculateAeg. Aey attains the minimum value at the finite temperature
To(e) for @ > ag. To(w) increases to a finite valugj as o increases to infinity. In

this case, by investigating the AT instability, we can show that there exists a region of
temperaturel where the RS solution is stable for arbitrary[10]. Let T({*T(a) be the
temperature where the AT-instability takes place. We found ﬂ;{ﬁt(a) < Ty(a), and

then T = liMgooe T3 (@) < Ty. The differenceTy — 737" tends to zero as the
magnitude of nois€l—k) increases. As for the asymptotic behaviour, from the saddle-point
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Figure 1. Temperature dependence of prefactors of asymptotic learning curves for the output-
noise model,P(u) = k sgn (u) with k = 0.5. Broken and full curves denohﬁéRS(T) and
(1RSB

MEA
shown by a diamond symbol.

for 1RSB solution in the minimum-error algorithm is also

equations we can prove thgt = ‘/ql%’;z tends to a constantng = (1 — ¢) « =2 and

AR = (1 - R) «x 2. Then the asymptotic form of generalization error becomes
k
Aég~ — RAR)Y? ~ ySF9(Tya™t
T

obtained above is really the absolute minimum, we calculate the RSB solutions outside the
limit.

)
1//((,RS(T) attains its minimum value & = 7. See figure 1. To see whether the minimum
stable region of the RS solution and also in the minimum-error algorithm of'the +0

According to Parisi, we puy®® = ¢qo for I(a/m) # I1(8/m),q* = q for
I(a/m) = I(B/m) anda # B, R® = R, where I(x) is the Gauss function [9]. For
generalP, the free energyf RSP for 1RSB is expressed as follows.
1 1
_~ (RSB _
Tf 2

1 1 o
+§(qo—R2)+éln27r(l—q1)— %lngo(l—ql)Jr;/DyZP(y)

(Va0 — R?%20+ /g1 —qoz1 — R
x/DzOIn{/DZ1H< qo0 20 + /41 — qoz1 y

1-g¢1 ) }
p=[ml—qo)+QL-—mA—q)] ™~

From the numerical results, we find that x

8

S

_R2 ~ _
= /9 gndz = /1L
q1—4qo

~—4 tend to
41—40
constants ag — oo, where¢ = /1 — 5—5 and7 = /%. In these limits, the saddle-
point equations form, ¥ andé are given by

i
mi2—m—8 = —F(m+ )2
2k As
my 2 m g2 m2&  Ag
— | = — +1n
m 4+ &2 m 4+ &2

m+82  k(m+82) A,
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Figure 2. Noise amplitude dependence of prefactors of asymptotic learning curv@ifior= k

sgn (u). Full curve and diamonds denoggire® and s > (Ty), respectively.

52

As

= A
k(32 —m—82)" "

where theA;s are expressed by integrations and functions:0f, ¢ and 8. By solving
these equations, we obtain the following scalings,

Agr= (1—q1) ~ Aquoo™? Ago = (1-qo) ~ Agoox > AR ~ ARga™?
Aeg =~y (T

We find thatl/félRSB)(T) gradually increases &6 decreases frorff({“(a). See figure 1. In

the minimume-error algorithmjeg for the 1RSB solution is expressed Asy ~ ,fﬂlg,fB’a*

[7,8]. As shown in figure Zw,\(,llgASB) > éRg(TO*) holds for any value ok. ThusTj really
gives the absolute minimum.

The case 08 > 0. This case includes the input-noise case=(1). As a typical example
for § = 1, we treatP(u) = k(1 — 2H(u)) with k = 1. Let us consider the RS solution.
As in the case of = 0, there exists the optimal temperatifge) > O for o > a1. The
numerical results suggest that the optimal temperdfu¢e) tends to infinity asx tends to
infinity. In fact, this is the case as is shown in the following. For gen&rale can prove
that in the RS solutiory tends to infinity asx — oo and the asymptotic form is expressed
as

_ 20+ _ 2
Ag Xa T AR x o™ T

S 145 2(1+43) 148
Aeg~ ——— (2AR)? ~ (RS TH)) 143 o~ 143
9= Jan st 5)( ) {y, (1)}

wheres = a [;° Dx x**%. The behaviour ofy{R9(T) nearp =1/T ~ 0 is
Yy (T o /B for o« ™! < B.

See figure 3. Thus, li;, o T1(@) = oo follows. This is rather a strange result and
the RS solution seems to be inadequate. Indeed, from numerical calculations we observe
T/ (@) > Ti(e), that is, the RS solution is unstable at the optimal temperafuie) for
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8 = 1. Further, we can prove that the RS solution is always asymptotically unstable for
fixed T and for anys. Therefore, we consider the 1RSB solution. From numerical results,
we assume the following asymptotic behaviounsg 1,2 < 1,7 < 1, ¥ > 1. Then, the
saddle-point equations become

) 2 1:_01,3( pm  2s 51~) 9
P qomé” — ¢ + i 2 v mé n )]
21~ %0 <2sﬁ~55—1—a feom b ) (10)
% = m n 00 Zﬁ
1 1 1 25
(PE(% — qo0) <‘P610$2 - m> - ﬁ In{e(1 — q1)} = 20[:\/7; (11)
ZS §—1
~ 12
YRE maﬂs (12)

x/+l

wheref = 1—e, a; = [Dx £

{In H(x)}*. From these equations, we obtain

Aq1 > Aquo(x_% (In a)_%
Ago == Agooa” 77 (INa) "
AR =~ ARoo” 75 (In o) 7
m 2~ mooz_ﬁ(ln a)f%.
Therefore, the generalization error becomes
Acg > YR (T)a™ 55 (In oy 70750,
The prefacton/fa(lRSa(T) is temperature independent for a wide rangd&ofThat is,
(RSB () o satimfora 55 « T < avs.

Thus, no optimal temperature exists for 1RSB solution.

From the above results, we note that the asymptotic behaviouxs0f3)—(6) and other
variables for the Gibbs algorithm are the same as those for the minimum-error algorithm in
each case [7, 8].

Here, we make some comments on the results obtained in this paper.

Noise versus temperatureWe can make a plausible argument for the existence of an
optimal temperature at least for some regiorvah the situation we consider. L&t be the

set which consists of the weight vectors whose energies are the minimum Mgluand

let «. be the maximum value af for which the minimum energ¥min is 0. Fore < «,
since the volumé/ of the setV is a large fraction of the total volume of the spaceusf

the overlapr is determined by the vectors W not only for7 = 0 but also for O< 7" « 1.
Therefore,g—’;hzo ~ 0. On the other hand, for rather large valuesxafor which En; is

much smaller than the energy of°, E[w®, £,] ~ pemin, V is a very small fraction of the
total volume. Sincew® ¢ V andV is very small, forT « 1 among the vectors which
contribute to the averagrg, the vectors outsid® will bear more resemblance w0° than
those inside). Thus, asT increases from 0, the participation of vectors outside the space
VY will make R increase. Thusg—§|T:o becomes positive. In the case of tifle— oo

limit, for any « R tends to zero since almost all students are selected equally. Therefore,
at least for some region af there seems to exist a moderate temperafurat which R
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Figure 3. B = 1/T dependence of prefactors of asymptotic learning curves for the input-noise
model, P(u) = k(1 — H(u)) with k = 1. Full and broken curves denot&fm(ﬁ) and its
approximationc./B for B « 1, respectively.

takes the maximum value and theptakes the minimum value. Our results in this paper
are beyond this speculation and fergreater than some critical valug we found the
optimal temperature in the RS solution. Although this result is obtained for two classes of
functions P (1) = ksgn(u) and P (u) = k(1 — 2H (1)), we consider that this is valid at least

for increasing functions ().

The model treated by Opper and Haussler corresponds to theP¢age= ksgnu) and
they set the temperature iy = (In %)‘1. This temperature is optimal for the Bayes
algorithm [6]. From numerical calculation, we obtain the relaﬁg‘ﬁ* < T§ < Ton. Thus
Ton is in the stable region for the RS solution but not the optimal temperature for the Gibbs
algorithm.

The reason that an optimal temperature exists only in the case-df in the asymptotic
region is not obvious. However, the cause of different asymptotic behaviours of the
generalization error for the casés= 0 ands > 0 is considered as follows. As learning
advances, the examplaswhich give crucial influence on the choice of weight vectors are
those withu® = (z - w®)/~/N ~ 0. The probability that such a sample answets= +1
is Pw® = (14 Pu®)/2. SinceP(+£0) is finite for § = 0 and is equal to 0 foé > O, it
is obvious that learning advances faster in the case-6f0 than in the case of > 0.

Our result fors = 0 implies that the Gibbs algorithm is more efficient than the minimum-
error algorithm. This is a remarkable result because we need not search for the lowest energy
states which are very difficult to find in general, especially in systems which have many
low energy states. Our result also implies the existence of an optimal schedul&(«),
when we perform the Monte Carlo simulation by the Gibbs algorithm and increase the value
of «. On the other hand, the result f&r> 0 implies that there exists no special temperature
in the Gibbs algorithm. Thus, we do not have to tune the temperature to achieve optimal
performance in this case. It would be very interesting to perform these simulations and to
see how learning advances. However, it is beyond the scope of this paper and left as a
future problem.
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