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Abstract. In learning under external disturbance, it is expected that some tolerance in the
system will optimize the learning process. In this paper, we give one example of this in learning
from stochastic rules by the Gibbs algorithm. Using the replica method, we show that for the
case of output noise, there exists an optimal temperature at which the generalization error is
a minimum. This temperature exists even in the limit of large training sets and is determined
by the stable replica symmetric solution. On the other hand, for other types of noise no such
temperature exists and the asymptotic behaviour is determined by the one-step replica symmetric
breaking solution. Further, the asymptotic expressions for learning curves are derived. They are
precisely the same as those for the minimum-error algorithm.

In recent years, the problem of learning from examples in neural networks has been
extensively studied from the viewpoint of statistical mechanics [1, 2] since Gardner opened
the way to treat the problem by means of the replica method [3]. Since there are many
learning algorithms, it is important to evaluate generalization ability acquired through
learning. For this purpose, the learning curves of the generalization errorεg, which is
the probability of false prediction on a novel example, have been calculated for various
types of networks, and it has been clarified that there are rich behaviours of learning curves
depending on the details of the networks [1, 2].

Among these learning behaviours, it seems very interesting that there may exist an
optimal procedure for learning. In particular, we expect the presence of an optimal
temperature in learning stochastic rules by perceptrons for the Gibbs algorithm. The reason
is that in general the existence of some proper tolerance will allow the system to adapt to
an external disturbance more easily, and in the Gibbs algorithm, the temperature represents
the measure of tolerance in selecting suitable network parameters, i.e. synaptic weights.

On this subject, there have been several studies. Györgyi [4] and Gÿorgyi and Tishby [5]
studied the perceptron learning for the spherical synaptic weight under finite temperature by
the replica method. They treated the input-noise model in which input examples are subject
to external disturbance and found there is an optimal temperature at which the generalization
error takes the minimum value. Since the replica symmetric (RS) solution becomes unstable
for largeα, they considered the optimal temperature only for the restricted region ofα where
the RS solution is stable. Here,α is defined asα ≡ p/N , whereN is the dimension of
synaptic weights andp is the number of examples.

† E-mail address: uezu@cc.nara.wu-ac.jp

0305-4470/97/220777+08$19.50c© 1997 IOP Publishing Ltd L777



L778 T Uezu

The other study by Opper and Haussler is on the output-noise model in which the binary
output by a teacher is reversed by a given probability [6]. They studied learning behaviour
at the special temperatureTOH for which the RS solution is stable for any value ofα. They
show that the temperatureTOH is optimal for the Bayes algorithm. Further they state that the
fast convergence of the learning curve,1εg ≡ (εg−εmin) ∝ α−1, whereεmin is the minimum
of the generalization error, is due to learning under the finite temperature. However, it is
not obvious whether there exists an optimal temperature and, even if it exists, whether it is
equal toTOH for the Gibbs algorithm.

The purpose of this paper is to investigate whether an optimal temperature exists in the
problem of learning from stochastic examples by perceptron with spherical synaptic weights
for the Gibbs algorithm, especially in the asymptotic region ofα →∞. We calculate the
learning curve for general types of noise including input and output noise by replica method
under the ansatz up to the one-step replica symmetry breaking (1RSB).

Let us describe the problem we treat in this paper. For details, see [7, 8]. Hereafter,
the norm of any vector is set to

√
N . We consider a stochastic target relation between a

N -dimensional input vectorx and a binary outputro ∈ {1,−1} which is represented by a
conditional probabilitypr(ro|x). We assume that the probability is a function of the inner
product between the inputx and the optimal spherical weightwo as

pr(+1|x) = P(uo) = 1+ P(uo)

2
uo ≡ (x ·wo)/

√
N.

(1)

We further assume that the functionP(u) is increasing and behaves as

P(u) ' a sgn(u)|u|δ (2)

nearu = 0. Further,P(−u) = −P(u) is assumed for brevity. The generalization errorεg

is expressed as

εg = εmin+
∫ ∞

0
Dy P (y)H

(
Ry√

1− R2

)
εmin = 1

2 −
∫ ∞

0
Dy P (y)

whereH(x) = ∫∞
x

Dy, Dy = exp(−y2/2) dy/
√

2π and R is the overlap between the
optimal weight and the weight of a learner.

When the training setξp = {(x1, r
o
1), (x2, r

o
2), . . . , (xp, r

o
p)} is given, we define the

energy of a weightw as the number of discrepancy between outputs by the teacher and
by the learner,E[w, ξp] = ∑p

µ=12(−rµuµ), where2(u) is the Heaviside function and

uµ = (xµ ·w)/
√
N .

The learning strategy we adopt is the Gibbs algorithm, in which a synaptic weightw
is selected according to the probability proportional to e−βE[w,ξp ] , whereβ is the inverse
temperature,β = 1/T . The algorithm for the limitT →+0 corresponds to the minimum-
error algorithm, in which only the synaptic weights whose energies are minimum are
selected. Therefore, the temperature represents a measure of tolerance in selecting synaptic
weights. The partition functionZ is expressed as

Z =
∫

dw δ(w2−N)e−βE[w,ξp ] =
∫

dw δ(w2−N)5p

µ=1[e−β + (1− e−β)2(rµuµ)]

and we calculate the average free energy per synapsef by the standard replica recipe

−βNf = 〈lnZ〉 = lim
n→0

1

n
(〈Zn〉 − 1)

where〈〉 denotes the average over quenched variablesxµ, r
o
µ andwo.
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The results obtained in this paper are summarized as follows.
(1) The asymptotic behaviours of learning curves asα→∞ in the Gibbs algorithm are

characterized by the local property of the probabilityP, the exponentδ. The expressions
of the generalization error for the RS solutions are

1εg ' ψ(RS)

0 (T )α−1 for δ = 0 (3)

1εg ' {ψ(RS)
1 (T )} 2(1+δ)

1+3δ α−
1+δ
1+3δ for δ > 0 (4)

and the ones for the 1RSB solutions are

1εg ' ψ(1RSB)
0 (T )α−1 for δ = 0 (5)

1εg ' ψ(1RSB)
δ (T )α−

1+δ
1+2δ (lnα)

1+δ
2(1+2δ) for δ > 0. (6)

The α-dependence of these expressions are precisely the same as those obtained by the
minimum-error algorithm both for the RS and 1RSB solutions [7, 8].

(2) For the output-noise model (δ = 0), there exists an optimal temperature forα larger
than some critical valuēα0, and this temperature really gives the minimum generalization
error and is determined by the stable RS solution.ψ

(RS)
0 (T ) attains its minimum value at

the finite value ofT ∗0 where the RS solution is stable. For other types of noise (δ > 0),
the asymptotic behaviour is determined by the 1RSB solution and the optimal temperature
does not exist. That is, althoughψ(RS)

1 (T ) behaves as

ψ
(RS)
1 (T ) ∝

√
1/T for T � α−1

the RS solution is asymptotically unstable for fixedT . On the other hand,ψ(1RSB)
δ (T ) is

independent of temperature for a wide range ofT ,

ψ
(1RSB)
δ (T ) ∝ δ 1+δ

2(1+2δ) for α−
δ

3(1+2δ) � T � α
δ

1+2δ .

That is, no special temperature exists.

Now, let us go into detailed calculations. In this paper, we use the following notation.
qαβ = (wα ·wβ )

N
denotes the overlap between weights of learners andRα = (wo·wα)

N
the overlap

between the weight of a learner and the optimal weight. Since the asymptotic behaviours
of these quantities are different in the two cases ofδ = 0 andδ > 0, we treat these cases
separately.

The case ofδ = 0. Assuming the RS ansatz, we putqαβ = q andRα = R. For general
P, the RS free energyf (RS) is expressed as

− 1

T
f (RS) = 1− R2

2(1− q) +
1

2
ln 2π(1− q)+ α

∫
Dy 2P(y)

∫
Du ln H̃

(√
q − R2u− Ry√

1− q

)

whereH̃ (u) = e−β + (1− e−β)H(u). As an example, we treatP(u) = ksgn(u) for several
values ofk and calculate1εg. 1εg attains the minimum value at the finite temperature
T0(α) for α > ᾱ0. T0(α) increases to a finite valueT ∗0 as α increases to infinity. In
this case, by investigating the AT instability, we can show that there exists a region of
temperatureT where the RS solution is stable for arbitraryα [10]. Let T AT

0 (α) be the
temperature where the AT-instability takes place. We found thatT AT

0 (α) 6 T0(α), and
then T AT∗

0 ≡ limα→∞ T AT
0 (α) 6 T ∗0 . The differenceT ∗0 − T AT∗

0 tends to zero as the
magnitude of noise(1−k) increases. As for the asymptotic behaviour, from the saddle-point
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Figure 1. Temperature dependence of prefactors of asymptotic learning curves for the output-
noise model,P(u) = k sgn (u) with k = 0.5. Broken and full curves denoteψ(RS)

0 (T ) and

ψ
(1RSB)
0 (T ), respectively.ψ(1RSB)

MEA for 1RSB solution in the minimum-error algorithm is also
shown by a diamond symbol.

equations we can prove thatχ ≡
√
q−R2

1−q tends to a constant,1q ≡ (1− q) ∝ α−2 and

1R ≡ (1− R) ∝ α−2. Then the asymptotic form of generalization error becomes

1εg ' k

π
(21R)1/2 ' ψ(RS)

0 (T )α−1. (7)

ψ
(RS)
0 (T ) attains its minimum value atT = T ∗0 . See figure 1. To see whether the minimum

obtained above is really the absolute minimum, we calculate the RSB solutions outside the
stable region of the RS solution and also in the minimum-error algorithm of theT → +0
limit. According to Parisi, we putqαβ = q0 for I (α/m) 6= I (β/m), qαβ = q1 for
I (α/m) = I (β/m) and α 6= β,Rα = R, where I (x) is the Gauss function [9]. For
generalP, the free energyf (1RSB) for 1RSB is expressed as follows.

− 1

T
f (1RSB) = 1

2
+ ϕ

2
(q0− R2)+ 1

2
ln 2π(1− q1)− 1

2m
lnϕ(1− q1)+ α

m

∫
Dy2P(y)

×
∫

Dz0 ln

{∫
Dz1 H̃

(√
q0− R2z0+√q1− q0z1− Ry√

1− q1

)m }
(8)

ϕ ≡ [m(1− q0)+ (1−m)(1− q1)]
−1.

From the numerical results, we find thatm, χ̃ ≡ ξ

η̃
=
√
q0−R2

q1−q0
and ε̃ ≡

√
1−q1

q1−q0
tend to

constants asα → ∞, whereξ ≡
√

1− R2

q0
and η̃ ≡

√
q1−q0

q0
. In these limits, the saddle-

point equations form, χ̃ and ε̃ are given by

mχ̃2−m− ε̃2 = −ε̃(m+ ε̃2)
Ã2

2kÃ3(
mχ̃

m+ ε̃2

)2

= m

m+ ε̃2
+ ln

ε̃2

m+ ε̃2
− m2ε̃

k(m+ ε̃2)

Ã4

Ã3
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Figure 2. Noise amplitude dependence of prefactors of asymptotic learning curves forP(u) = k
sgn(u). Full curve and diamonds denoteψ(1RSB)

MEA andψ(RS)
0 (T ∗0 ), respectively.

Ã3 = ε̃2

4k(χ̃2−m− ε̃2)
Ã1

where theÃis are expressed by integrations and functions ofm, χ̃, ε̃ and β. By solving
these equations, we obtain the following scalings,

1q1 ≡ (1− q1) ' 1q1,0α
−2 1q0 ≡ (1− q0) ' 1q0,0α

−2 1R ' 1R0α
−2

1εg ' ψ(1RSB)
0 (T )α−1.

We find thatψ(1RSB)
0 (T ) gradually increases asT decreases fromT AT

0 (α). See figure 1. In
the minimum-error algorithm,1εg for the 1RSB solution is expressed as1εg ' ψ(1RSB)

MEA α−1

[7, 8]. As shown in figure 2,ψ(1RSB)
MEA > ψ

(RS)
0 (T ∗0 ) holds for any value ofk. ThusT ∗0 really

gives the absolute minimum.

The case ofδ > 0. This case includes the input-noise case (δ = 1). As a typical example
for δ = 1, we treatP(u) = k(1− 2H(u)) with k = 1. Let us consider the RS solution.
As in the case ofδ = 0, there exists the optimal temperatureT1(α) > 0 for α > ᾱ1. The
numerical results suggest that the optimal temperatureT1(α) tends to infinity asα tends to
infinity. In fact, this is the case as is shown in the following. For generalδ, we can prove
that in the RS solutionχ tends to infinity asα→∞ and the asymptotic form is expressed
as

1q ∝ α− 2(1+δ)
1+3δ 1R ∝ α− 2

1+3δ

1εg ' 2s√
2π(1+ δ) (21R)

1+δ
2 ' {ψ(RS)

1 (T )} 2(1+δ)
1+3δ α−

1+δ
1+3δ

wheres = a ∫∞0 Dx x1+δ. The behaviour ofψ(RS)
1 (T ) nearβ = 1/T ∼ 0 is

ψ
(RS)
1 (T ) ∝

√
β for α−1� β.

See figure 3. Thus, limα→∞ T1(α) = ∞ follows. This is rather a strange result and
the RS solution seems to be inadequate. Indeed, from numerical calculations we observe
T AT

1 (α) > T1(α), that is, the RS solution is unstable at the optimal temperatureT1(α) for



L782 T Uezu

δ = 1. Further, we can prove that the RS solution is always asymptotically unstable for
fixed T and for anyδ. Therefore, we consider the 1RSB solution. From numerical results,
we assume the following asymptotic behaviours,m � 1, ε̃ � 1, η̃ � 1, χ̃ � 1. Then, the
saddle-point equations become

ϕ2q0mξ
2− ϕ + 1' −αβ

η̃

(
βm

2π
√

2
− 2s√

2π
ξδ−1η̃

)
(9)

ϕξ2− 1' − αη̃√
2π

(
2sβη̃ξ δ−1− a00β̃ε̃ −m β2

2
√
π

)
(10)

ϕ
1

2
(q1− q0)

(
ϕq0ξ

2− 1

m

)
− 1

2m2
ln{ϕ(1− q1)} ' αβ2η̃

2π
√

2
(11)

ϕRξ ' 2s√
2π
αβξδ−1 (12)

whereβ̃ = 1− e−β, ajk =
∫

Dx xj+1

H̃ (x)
{ln H̃ (x)}k. From these equations, we obtain

1q1 ' 1q1,0α
− 2(1+δ)

1+2δ (lnα)−
1+3δ
1+2δ

1q0 ' 1q0,0α
− 2

1+2δ (lnα)−
2δ

1+2δ

1R ' 1R0α
− 2

1+2δ (lnα)
1

1+2δ

m ' m0α
− δ

1+2δ (lnα)−
1+3δ

2(1+2δ) .

Therefore, the generalization error becomes

1εg ' ψ(1RSB)
δ (T )α−

1+δ
1+2δ (lnα)

1+δ
2(1+2δ) .

The prefactorψ(1RSB)
δ (T ) is temperature independent for a wide range ofT . That is,

ψ
(1RSB)
δ (T ) ∝ δ 1+δ

2(1+2δ) forα−
δ

3(1+2δ) � T � α
δ

1+2δ .

Thus, no optimal temperature exists for 1RSB solution.
From the above results, we note that the asymptotic behaviours of1εg (3)–(6) and other

variables for the Gibbs algorithm are the same as those for the minimum-error algorithm in
each case [7, 8].

Here, we make some comments on the results obtained in this paper.

Noise versus temperature.We can make a plausible argument for the existence of an
optimal temperature at least for some region ofα in the situation we consider. LetV be the
set which consists of the weight vectors whose energies are the minimum valueEmin and
let αc be the maximum value ofα for which the minimum energyEmin is 0. Forα � αc,
since the volumeV of the setV is a large fraction of the total volume of the space ofw,
the overlapR is determined by the vectors inV not only forT = 0 but also for 0< T � 1.
Therefore,∂R

∂T
|T=0 ' 0. On the other hand, for rather large values ofα for which Emin is

much smaller than the energy ofwo, E[wo, ξp] ' pεmin, V is a very small fraction of the
total volume. Sincewo /∈ V and V is very small, forT � 1 among the vectors which
contribute to the averageR, the vectors outsideV will bear more resemblance towo than
those insideV. Thus, asT increases from 0, the participation of vectors outside the space
V will make R increase. Thus,∂R

∂T
|T=0 becomes positive. In the case of theT → ∞

limit, for any α R tends to zero since almost all students are selected equally. Therefore,
at least for some region ofα there seems to exist a moderate temperatureT at whichR
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Figure 3. β = 1/T dependence of prefactors of asymptotic learning curves for the input-noise
model, P(u) = k(1 − H(u)) with k = 1. Full and broken curves denoteψ(RS)

1 (β) and its
approximationc

√
β for β � 1, respectively.

takes the maximum value and thenεg takes the minimum value. Our results in this paper
are beyond this speculation and forα greater than some critical valuēαδ we found the
optimal temperature in the RS solution. Although this result is obtained for two classes of
functionsP(u) = ksgn(u) andP(u) = k(1− 2H(u)), we consider that this is valid at least
for increasing functionsP(u).

The model treated by Opper and Haussler corresponds to the caseP(u) = ksgn(u) and
they set the temperature toTOH = (ln 1+k

1−k )
−1. This temperature is optimal for the Bayes

algorithm [6]. From numerical calculation, we obtain the relationT AT∗
0 6 T ∗0 < TOH. Thus

TOH is in the stable region for the RS solution but not the optimal temperature for the Gibbs
algorithm.

The reason that an optimal temperature exists only in the case ofδ = 0 in the asymptotic
region is not obvious. However, the cause of different asymptotic behaviours of the
generalization error for the casesδ = 0 andδ > 0 is considered as follows. As learning
advances, the examplesx which give crucial influence on the choice of weight vectors are
those withuo = (x ·wo)/

√
N ∼ 0. The probability that such a sample answersro = +1

is P(uo) = (1+ P(uo))/2. SinceP(±0) is finite for δ = 0 and is equal to 0 forδ > 0, it
is obvious that learning advances faster in the case ofδ = 0 than in the case ofδ > 0.

Our result forδ = 0 implies that the Gibbs algorithm is more efficient than the minimum-
error algorithm. This is a remarkable result because we need not search for the lowest energy
states which are very difficult to find in general, especially in systems which have many
low energy states. Our result also implies the existence of an optimal scheduleT = T0(α),
when we perform the Monte Carlo simulation by the Gibbs algorithm and increase the value
of α. On the other hand, the result forδ > 0 implies that there exists no special temperature
in the Gibbs algorithm. Thus, we do not have to tune the temperature to achieve optimal
performance in this case. It would be very interesting to perform these simulations and to
see how learning advances. However, it is beyond the scope of this paper and left as a
future problem.
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